Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Hong Wen, Kun Zhang, Xue-Mei Li, Xiao-Fang Tang and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.064$
$w R$ factor $=0.109$
Data-to-parameter ratio $=7.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N, N^{\prime}-Bis(2,5-dimethoxyphenyl)oxamide

The title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$, has two independent molecules in the asymmetric unit. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds make the molecules essentially planar. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

In our ongoing studies of oxalamide derivatives, the title compound, (I), was obtained from the reaction of $2,5-$ dimethoxyaniline and oxalyl chloride.

(I)

The asymmetric unit of (I) consists of two crystallographically independent molecules A and B (Fig. 1). The bond lengths and angles in A and B agree with each other and are within normal ranges (Allen et al., 1987). However, the $\mathrm{C} 7-\mathrm{C} 8 \quad[1.549(7) \AA]$ and $\mathrm{C} 25-\mathrm{C} 26$ [1.517 (8) \AA] bond lengths are greater than the typical $\mathrm{Csp} p^{2}-\mathrm{Csp}{ }^{2}$ single bond distance $(1.460 \AA)$ and are comparable to that observed in N, N^{\prime}-bis(2-ethoxyphenyl)oxalamide [1.535 (3) Å; Wen et al., 2006]. Each independent molecule is almost planar, with the four methyl fragments oriented in opposite directions owing to the steric effect of the carbonyl groups. In each molecule, there exist intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) which contribute to the planarity of the molecule.

In the crystal structure, molecules are linked into a threedimensional network by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions. In Table $1, C g 1$ and $C g 2$ denote the centroids of the C19-C24 and C27-C32 rings, respectively.

Experimental

To a solution of 2,5 -dimethoxyaniline ($30.6 \mathrm{~g}, 0.2 \mathrm{~mol}$) in benzene $(70 \mathrm{ml})$ was added dropwise a solution of oxalyl chloride $(6.4 \mathrm{~g}$, 0.05 mol) in benzene (30 ml), and the mixture was stirred at 343 K for 9 h . After cooling to room temperature, water (50 ml) was added to the reaction mixture and the organic phase was washed three times with water and dried at room temperature for 3 d to obtain (I) as a

Received 17 July 2006 Accepted 20 July 2006
\qquad

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
solid. Single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of an N, N-dimethylformamide solution over a period of 24 h .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=360.36$
Monoclinic, $P 2_{1}$
$a=6.597(3) \AA \AA$
$b=17.427(7) \AA$
$c=15.43(6) \AA$
$\beta=91.496(9){ }^{\circ}$
$V=1773.7(13) \AA^{3}$

Data collection

Siemens SMART 1000 CCD area-
\quad detector diffractometer
ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996)
$\quad T_{\min }=0.954, T_{\max }=0.995$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.110$
$S=0.99$
3611 reflections
469 parameters

$$
Z=4
$$

$D_{x}=1.350 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.46 \times 0.06 \times 0.05 \mathrm{~mm}$

10019 measured reflections 3611 independent reflections 1861 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\text {max }}=26.1^{\circ}$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.028 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{O} 2$	0.86	2.23	2.665 (7)	112
$\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{O} 4$	0.86	2.20	2.615 (6)	109
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.22	2.657 (6)	112
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}$	0.86	2.19	2.607 (6)	110
N3-H3A \cdots O8	0.86	2.21	2.656 (6)	112
N3-H3A \cdots O10	0.86	2.19	2.604 (7)	110
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 7$	0.86	2.22	2.663 (6)	112
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 11$	0.86	2.18	2.599 (6)	110
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.93	2.34	2.936 (7)	122
C14-H14...O2	0.93	2.32	2.923 (7)	122
C16-H16A $\cdots \mathrm{O}^{\text {i }}$	0.96	2.47	3.367 (8)	155
$\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{O} 9^{\text {ii }}$	0.96	2.60	3.302 (8)	131
C19-H19 . . ${ }^{\text {O }}$	0.93	2.34	2.945 (7)	122
C32-H32 . O8	0.93	2.34	2.938 (7)	121
C34-H34A . ${ }^{\text {O } 11}$	0.96	2.52	3.243 (8)	132
C35-H35A \cdots O12 ${ }^{\text {iii }}$	0.96	2.31	3.228 (8)	160
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 1^{\text {i }}$	0.93	2.77	3.572	145
C12-H12 $\cdots \mathrm{Cg} 2^{\text {iv }}$	0.93	2.83	3.603	141

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+1$; (ii) $x-1, y+1, z$; (iii) $-x+2, y-\frac{1}{2},-z ;$ (iv)
$-x, y+\frac{1}{2},-z$.
All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$, $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ and $1.5 U_{\text {eq }}($ methyl C$)$. 3215 Friedel reflections were merged before the final refinement because of the absence of any significant anomalous scattering effects.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No. 05-2-JC-80) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wen, Y.-H., Xu, L.-L., Li, X.-M. \& Zhang, S.-S. (2006). Acta Cryst. E62, o2592o2593.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

